13. 垃圾回收相关算法
13. 垃圾回收相关算法
1. 标记阶段算法
简单来说,垃圾回收 分成两步, 第一步找出垃圾,第二步进行回收,而标记阶段使用的算法,就是 为了找出谁是垃圾
1、 在堆里存放着几乎所有的 Java 对象实例,在 GC 执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象;
2、 只有被标记为己经死亡的对象,GC 才会在执行垃圾回收时,释放掉其所占用的内存空间,因此这个过程我们可以称为垃圾标记阶段;
3、 那么在 JVM 中究竟是如何标记一个死亡对象呢?简单来说,当一个对象已经不再被任何的存活对象继续引用时,就可以宣判为已经死亡;
4、 判断对象存活一般有两种方式:引用计数算法和可达性分析算法;
1.1 引用计数算法
1、 引用计数算法(ReferenceCounting)比较简单,对每个对象保存一个整型的引用计数器属性用于记录对象被引用的情况;
2、 对于一个对象 A,只要有任何一个对象引用了 A,则 A 的引用计数器就加 1;当引用失效时,引用计数器就减 1 只要对象 A 的引用计数器的值为 0,即表示对象 A 不可能再被使用,可进行回收;
优点:
- 实现简单,垃圾对象便于辨识;
- 判定效率高,回收没有延迟性。
缺点:
1、 它需要单独的字段存储计数器,这样的做法增加了存储空间的开销;
2、 每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销;
3、 引用计数器有一个严重的问题,即无法处理循环引用的情况这是一条致命缺陷,导致在 Java 的;
因为第三点的严重性,JAVA 垃圾回收器中没有使用这类算法。
什么是 循环引用
上面的图中 , 对象一引用了对象二 , 对象二引用了对象三, 而对象三又重新指向了对象一,
而对象一是被外部引用的,所以它的计数器是 2,
但是当外部的引用断掉时, 计数器减 1,仍然是 1, 不会被清除,导致这三个对象 无法清除,造成内存泄漏
使用代码证明 JAVA 中没有使用引用计数算法
public class RefCountGC {
//这个成员属性唯一的作用就是占用一点内存
private byte[] bigSize = new byte[5 * 1024 * 1024];//5MB
Object reference = null;
public static void main(String[] args) {
RefCountGC obj1 = new RefCountGC();
RefCountGC obj2 = new RefCountGC();
obj1.reference = obj2;
obj2.reference = obj1;
obj1 = null;
obj2 = null;
//显式的执行垃圾回收行为,这里发生GC,obj1和obj2能否被回收?
// System.gc();
}
}
上面代码的内存示意图:
下面运行验证一下
jvm 参数: -XX:+PrintGCDetails
打印 GC 日志
不进行垃圾回收时:使用了 16798k
手动进行 GC: 只剩下了655k
, 说明 这两个对象确实被回收了
引用计数小结
1、 引用计数算法,是很多语言的资源回收选择,例如因人工智能而更加火热的 Python,它是同时支持引用计数和垃圾收集机制;
2、 具体哪种最优是要看场景的,业界有大规模实践中仅保留引用计数机制,以提高吞吐量的尝试;
3、 Java 并没有选择引用计数,是因为其存在一个基本的难题,也就是很难处理循环引用关系 Python 如何解决循环引用?;
- 手动解除:很好理解,就是在合适的时机,代码中手动解除引用关系。
- 使用弱引用 weakref,weakref 是 Python 提供的标准库,旨在解决循环引用。
1.2 可达性分析算法
可达性分析算法:也可以称为根搜索算法、追踪性垃圾收集
1、 相对于引用计数算法而言,可达性分析算法不仅同样具备实现简单和执行高效等特点,更重要的是该算法可以有效地解决在引用计数算法中循环引用的问题,防止内存泄漏的发生;
2. 相较于引用计数算法,这里的可达性分析就是 Java、C#选择的。这种类型的垃圾收集通常也叫作追踪性垃圾收集(Tracing Garbage Collection)
基本思路如下:
1、 可达性分析算法是以根对象集合(GCRoots)为起始点,按照从上至下的方式搜索被根对象集合所连接的目标对象是否可达;
2、 使用可达性分析算法后,内存中的存活对象都会被根对象集合直接或间接连接着,搜索所走过的路径称为引用链(ReferenceChain);
3、 如果目标对象没有任何引用链相连,则是不可达的,就意味着该对象己经死亡,可以标记为垃圾对象;
4、 在可达性分析算法中,只有能够被根对象集合直接或者间接连接的对象才是存活对象;
示意图:
GC Roots 可以是哪些元素
列举:
1、 虚拟机栈中引用的对象,比如:各个线程被调用的方法中使用到的参数、局部变量等;
2、 本地方法栈内 JNI(通常说的本地方法)引用的对象方法区中类静态属性引用的对象,比如:Java 类的引用类型静态变量;
3、 方法区中常量引用的对象,比如:字符串常量池(StringTable)里的引用;
4、 所有被同步锁 synchronized 持有的对象;
5、 Java 虚拟机内部的引用;
6、 基本数据类型对应的 Class 对象,一些常驻的异常对象(如:NullPointerException、OutofMemoryError),系统类加载器;
7、 反映 java 虚拟机内部情况的 JMXBean、JVMTI 中注册的回调、本地代码缓存等;
总结一句话就是,除了堆空间外的一些结构,比如:虚拟机栈、本地方法栈、方法区、字符串常量池等地方对堆空间进行引用的,都可以作为 GC Roots 进行可达性分析
扩展:
除了这些固定的 GC Roots 集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整 GC Roots 集合。比如:在进行分代收集和局部回收时(PartialGC)。
如果只针对 Java 堆中的某一块区域进行垃圾回收(比如:典型的只针对新生代),必须考虑到这个区域的对象完全有可能被其他堆区域的对象所引用,例如老年代等,这时候就需要一并将关联的区域对象也加入 GC Roots 集合中去考虑,才能保证可达性分析的准确性。
总结:
- 在进行可达性分析时, 要对目标区域进行隔离, 一般将目标区域外的对象作为 GC Roots,
- 例如在大多数 GC 收集整个堆空间时, 就将堆外的对象,例如方法区作为 GC Roots 的对象
- 如果在特殊的 GC 中,单独收集新生代,,就需要将新生代除外的区域的对象都考虑到,比如 老年代中引用新生代对象,此时老年代的对象也可以作为 GC Roots
可达性分析注意事项
1、 如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行这点不满足的话分析结果的准确性就无法保证;
2、 这点也是导致 GC 进行时必须“StopTheWorld”的一个重要原因即使是号称(几乎)不会发生停顿的 CMS 收集器中,枚举根节点时也是必须要停顿的;
2. 对象的 finalization 机制
1、 Java 语言提供了对象终止(finalization)机制来允许开发人员提供对象被销毁之前的自定义处理逻辑;
2、 当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,标记阶段,总会先调用这个对象的 finalize()方法;
3、 finalize()方法允许在子类中被重写,用于在对象被回收时进行资源释放通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件、套接字和数据库连接等;
注意 finaliza() 方法并不是必定是销毁前调用的, 它也是确定此对象可不可以被销毁的一个判断因素,在标记阶段调用
Object 类中 finalize() 源码
// 等待被重写
protected void finalize() throws Throwable { }
2.1 finalize() 方法使用的注意事项
1、 永远不要主动调用某个对象的 finalize()方法应该交给垃圾回收机制调用;
- finalize() 方法是可以在标记阶段导致对象复活的,但是如果手动执行过,那么将不在判断(finalize 方法只可调用一次)
- finalize()方法的执行时间是没有保障的,它完全由 GC 线程决定,极端情况下,若不发生 GC,则 finalize()方法将没有执行机会。因为 jvm 中有专门执行对象 finalize 方法的线程,此线程优先级比较低,即使主动调用该方法,也不会因此就直接进行回收 2、 一个糟糕的 finalize()会严重影响 GC 的性能(写个多重循环,每个对象在标记时调用时,都可能执行);
3、 从功能上来说,finalize()方法与 C++中的析构函数比较相似,但是 Java 采用的是基于垃圾回收器的自动内存管理机制,所以 finalize()方法在本质上不同于 C++中的析构函数;
2.2 对象的三种可能的状态
由于 finalize()方法的存在,可能会将对象复活,所以虚拟机中的对象一般处于三种可能的状态。
如果从所有的根节点都无法访问到某个对象,说明对象己经不再使用了。一般来说,此对象需要被回收。
但事实上,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段(关入大牢)。一个无法触及的对象有可能在某一个条件下“复活”自己,如果这样,那么对它立即进行回收就是不合理的
为此,定义虚拟机中的对象可能的三种状态。如下:
1、 可触及的:从根节点开始,可以到达这个对象;
2、 可复活的:对象的所有引用都被释放,但是对象有可能在 finalize()中复活(所有引用全部释放,第一次标记);
3、 不可触及的:对象的 finalize()被调用,并没有重新使 GCRoots 跟节点的对象引用自己(关入大牢的对象没有找到关系),所以没有复活,那么就会进入不可触及状态不可触及的对象不可能被复活,因为 finalize()只会被调用一次(finalize 方法没有复活自己,第二次标记);
以上 3 种状态中,是由于 finalize()方法的存在,进行的区分。只有在对象两次标记,不可触及时才可以被回收。
2.3 finalize() 具体执行过程
上一节已经说到, 判定一个对象 objA 是否可回收,至少要经历两次标记过程:
1、 如果对象 objA 到 GCRoots 没有引用链,则进行第一次标记;
2、 进行筛选,判断此对象是否有必要执行 finalize()方法;
- 如果对象 objA 没有重写 finalize()方法,或者 finalize()方法已经被虚拟机调用过,则虚拟机视为“没有必要执行”,objA 直接 判定为不可触及的。(没有关系,或者关系已经找过了)
- 如果对象 objA 重写了 finalize()方法,且还未执行过,那么 objA 会被插入到 F-Queue 队列中,由一个虚拟机自动创建的、低优先级的 Finalizer 线程触发其 finalize()方法执行。(如果关入大牢的有可能有关系,而且没有找过,则把他们都放到一个房间中,让他们打电话) 3、 finalize()方法是对象逃脱死亡的最后机会,稍后 GC 会对 F-Queue 队列中的对象进行第二次标记如果 objA 在 finalize()方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,objA 会被移出“即将回收”集合(如果找到打电话攀上关系,则复活);
4、 之后,对象若再次出现没有引用存在的情况在这个情况下,finalize()方法不会被再次调用,对象会直接变成不可触及的状态,也就是说,一个对象的 finalize()方法只会被调用一次(如果复活后,再次关进来,则不会再让他找关系,直接标记第二次);
使用代码证明上述观点
下面的代码中, 使用类变量作为 GC Roots ,并且在对象回收时,在 finalize 方法里自救
public class CanReliveObj {
public static CanReliveObj obj;//类变量,属于 GC Root
//此方法只能被调用一次
@Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("调用当前类重写的finalize()方法");
obj = this;//当前待回收的对象在finalize()方法中与引用链上的一个对象obj建立了联系
}
public static void main(String[] args) {
try {
obj = new CanReliveObj();
// 对象第一次成功拯救自己
obj = null;
System.gc();//调用垃圾回收器
System.out.println("第1次 gc");
// 因为Finalizer线程优先级很低,暂停2秒,以等待它
Thread.sleep(2000);
if (obj == null) {
System.out.println("obj is dead");
} else {
System.out.println("obj is still alive");
}
System.out.println("第2次 gc");
// 下面这段代码与上面的完全相同,但是这次自救却失败了
obj = null;
System.gc();
// 因为Finalizer线程优先级很低,暂停2秒,以等待它
Thread.sleep(2000);
if (obj == null) {
System.out.println("obj is dead");
} else {
System.out.println("obj is still alive");
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
- 将 finalize 方法注释的情况
打印:
第1次 gc
obj is dead
第2次 gc
obj is dead
说明此对象在第一次 gc 时直接就回收了
- 将注释放开
打印:
调用当前类重写的finalize()方法
第1次 gc
obj is still alive
第2次 gc
obj is dead
在第一次 gc 时 ,调用了 finalize 方法,并又重新使类变量指向自己,复活
但是在第二次 gc 时,发现 finalize 方法 就没有再执行了,直接被回收
3. GC Roots 溯源
本节将介绍使用各个工具查看 GC Roots 集合
3.1 MAT 工具查看
1、 MAT 是 MemoryAnalyzer 的简称,它是一款功能强大的 Java 堆内存分析器用于查找内存泄漏以及查看内存消耗情况;
2、 MAT 是基于 Eclipse 开发的,是一款免费的性能分析工具;
3、 大家可以在http://www.eclipse.org/mat/下载并使用MAT;
获取 dump 文件
jvm 的一个内存快照,可以被各个软件分析,
下面将演示如何将正在运行的 程序导出 dump 文件
public class GCRootsTest {
public static void main(String[] args) {
List<Object> numList = new ArrayList<>();
Date birth = new Date();
for (int i = 0; i < 100; i++) {
numList.add(String.valueOf(i));
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
System.out.println("数据添加完毕,请操作:");
new Scanner(System.in).next();
numList = null;
birth = null;
System.out.println("numList、birth已置空,请操作:");
new Scanner(System.in).next();
System.out.println("结束");
}
}
先将程序跑起来,将阻塞
方式一:命令行使用 jmap
方式二:使用 JVisualVM
第一步: 选中监视 tab, 点击堆 Dump
第二步: 右击另存为
第三步: 将上面程序 键盘输入,继续执行, 捕获第二个快照
这样我们就获取到了两个 内存快照, 一个是被局部变量引用的,一个是释放掉的
如何使用 MAT 查看堆内存快照
打开 MAT ,选择 File --> Open Heap Dump, 选择 需要查看的 Dump 文件
选择 Java Basics --> GC Roots
先后查看两个快照, 由于 局部变量不再引用对象, 所以不在是 GC Roots
释放后:
3.2 JProfiler 工具使用
不用 dump 文件, 查看实时的 运行时程序
查看当前程序中堆中最多的对象类型,并查看其 GC Roots
点击:Live Memory --> All Object ,查看 堆中最多的对象, 并右击 ,点击 Show Selection In Heap Walker
在显示界面 选择 References
tab,查看堆中该类型的所有实例, 然后可以选中某一个对象,选择 Incoming References
选项, 再点击 Show Paths To FC Roots
按钮,弹出框点击确认
然后就可以看到 选中的对象的 GC Roots , 例如下面的案例中, 字符串 "添加完毕,请操作" 对象 的 GC Roots 就是 out
对象, 因为被 System.out.println("添加完毕,请操作")
打印
使用 JProfiler 分析 OOM
代码:
public class HeapOOM {
byte[] buffer = new byte[1 * 1024 * 1024];//1MB
public static void main(String[] args) {
ArrayList<HeapOOM> list = new ArrayList<>();
int count = 0;
try{
while(true){
list.add(new HeapOOM());
count++;
}
}catch (Throwable e){
System.out.println("count = " + count);
e.printStackTrace();
}
}
}
上面的代码 将会导致 OOM, 可以开启 jvm 指令,在出现 OOM 时 自动生成 dump 文件
运行程序,jvm 指令: -Xms8m -Xmx8m -XX:+HeapDumpOnOutOfMemoryError
输出日志: 出现了 OOM,生成的 dump 文件在 工程目录下
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid14608.hprof ...
java.lang.OutOfMemoryError: Java heap space
at com.atguigu.java.HeapOOM.<init>(HeapOOM.java:12)
at com.atguigu.java.HeapOOM.main(HeapOOM.java:20)
Heap dump file created [7797849 bytes in 0.010 secs]
count = 6
打开 JProfiler, 可以在 超大对象 里面找到它
也可以 查看出现 OOM 的线程:
4. 垃圾清除阶段
上面第一节中, 说到了如何标记垃圾,那么下面就开始清除垃圾,关于清除垃圾,也有不同的算法
目前在 JVM 中比较常见的三种垃圾收集算法是
1、 标记-清除算法(Mark-Sweep);
2、 复制算法(Copying);
3、 标记-压缩算法(Mark-Compact);
4.1 标记——清除 算法
标记-清除算法(Mark-Sweep)是一种非常基础和常见的垃圾收集算法,该算法被 J.McCarthy 等人在 1960 年提出并并应用于 Lisp 语言。
执行过程
当堆中的有效内存空间(available memory)被耗尽的时候,就会停止整个程序(也被称为 stop the world),然后进行两项工作,第一项则是标记,第二项则是清除
**标记:**垃圾收集器从引用根节点开始遍历,标记所有被引用的对象。(这里是标记不是垃圾的对象)
- 一般是在对象的 Header 中记录为可达对象。
- 注意:标记的是引用的对象,不是垃圾!!
**清除:**垃圾收集器对堆内存从头到尾进行线性的遍历,如果发现某个对象在其 Header 中没有标记为可达对象,则将其回收
流程示意图, 先从跟节点 找出所有的 可达对象, 标记为"绿色",再遍历整个对象列表,将没有标记为绿色的清除
何为清除?
这里所谓的清除并不是真的置空,而是把需要清除的对象地址回收,保存在空闲的地址列表里。下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够,就覆盖原有的地址。 (跟电脑硬盘的删除一样)
关于空闲列表是在为对象分配内存的时候提过:
如果内存规整
- 采用指针碰撞的方式进行内存分配
如果内存不规整
- 虚拟机需要维护一个空闲列表
- 采用空闲列表分配内存
标记-清除算法的缺点
标记清除算法的优点很明显, 简单 易理解 易于实现,但是缺点也很明显
1、 标记清除算法的效率不算高;
2、 在进行 GC 的时候,需要停止整个应用程序,用户体验较差;
3、 这种方式清理出来的空闲内存是不连续的,产生内存碎片,需要维护一个空闲列表;
4.2 复制算法
1、 为了解决标记-清除算法在垃圾收集效率方面的缺陷,M.L.Minsky 于 1963 年发表了著名的论文,“使用双存储区的 Lisp 语言垃圾收集器 CALISPGarbageCollectorAlgorithmUsingSerialSecondaryStorage)”;
2、 M.L.Minsky 在该论文中描述的算法被人们称为复制(Copying)算法,它也被 M.L.Minsky 本人成功地引入到了 Lisp 语言的一个实现版本中;
核心思路:
将存放对象的内存空间分为两块,每次只使用其中一块,在垃圾回收时,垃圾回收器也从跟节点开始遍历,找到所有的可达对象,但是此时不标记, 而是直接将此对象复制到未被使用的内存块中,之后全盘清除正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收
示意图:
把可达的对象,直接复制到另外一个区域中复制完成后,from 区里面的对象就没有用了,新生代里面就用到了复制算法
复制算法的优缺点
优点
1、 没有标记和清除过程,实现简单,运行高效;
2、 复制过去以后保证空间的连续性,不会出现“碎片”问题;
缺点
1、 此算法的缺点也是很明显的,就是需要两倍的内存空间;
2、 因为对象的地址发生了改变,所有对此对象的使用的地方的引用都需要改变;
注意事项
如果系统中的垃圾对象很多,复制算法需要复制的存活对象数量并不会太大,效率较高,但是如果垃圾对象非常少的情况, 每次拷贝都几乎全部拷贝了,然后清除也就清除了个寂寞,
所以在 jvm 中新生代中, 由于垃圾回收频率高,数量多,一次通常可以回收 70% - 99% 的内存空间 ,回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。
4.3 标记 - 压缩(或标记-整理,Mark - Compact) 算法
复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代,更常见的情况是大部分对象都是存活对象。
如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法。
标记-清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且在执行完内存回收后还会产生内存碎片,所以 JVM 的设计者需要在此基础之上进行改进。标记-压缩(Mark-Compact)算法由此诞生。
1970 年前后,G.L.Steele、C.J.Chene 和 D.s.Wise 等研究者发布标记-压缩算法。在许多现代的垃圾收集器中,人们都使用了标记-压缩算法或其改进版本。
执行流程:
1、 第一阶段和标记清除算法一样,从根节点开始标记所有被引用对象;
2、 第二阶段将所有的存活对象压(或者说是整理)到内存的一端,按顺序排放之后,清理边界外所有的空间;
示意图:
标记-压缩算法与标记-清除算法的比较
标记-压缩算法的最终效果等同于标记-清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记-清除-压缩(Mark-Sweep-Compact)算法。
二者的本质差异在于
- 标记-清除算法是一种非移动式的回收算法,
- 标记-压缩是移动式的。
而且在对象分配内存时可以看到,若内存区域是零散的,需要访问空闲列表(标记-清除算法回收地址到空闲列表)
但是如果使用标记-压缩算法, 标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM 只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。
是否移动回收后的存活对象是一项优缺点并存的风险决策。
标记-压缩算法的优缺点
优点
1、 消除了标记-清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM 只需要持有一个内存的起始地址即可;
2、 消除了复制算法当中,内存减半的高额代价;
缺点
1、 从效率上来说,标记-整理算法要低于复制算法和标记清除-算法;
2、 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址;
3、 移动过程中,需要全程暂停用户应用程序即:STW;
4.4 三种清除算法的 VS
三种算法的横纵对比:
标记清除 | 标记整理 | 复制 | |
---|---|---|---|
速率 | 中等 | 最慢 | 最快 |
空间开销 | 少(但会堆积碎片) | 少(不堆积碎片) | 通常需要活对象的2倍空间(不堆积碎片) |
移动对象 | 否 | 是 | 是 |
1、 效率上来说,复制算法是当之无愧的老大,但是却浪费了太多内存;
2、 而为了尽量兼顾上面提到的三个指标,标记-整理算法相对来说更平滑一些,但是效率上不尽如人意,它比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段;
总结: 没有最好的算法,只有最适合的算法
4.5 分代收集算法
前面所有这些算法中,并没有一种算法可以完全替代其他算法,它们都具有自己独特的优势和特点。
分代收集算法应运而生。他的目标不是替换上面的算法,而是具体问题 具体对待
分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率。
一般是把 Java 堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,以提高垃圾回收的效率。
在 Java 程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关:
- 比如 Http 请求中的 Session 对象、线程、Socket 连接,这类对象跟业务直接挂钩,因此生命周期比较长。
- 但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String 对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。
目前几乎所有的 GC 都采用分代收集算法执行垃圾回收的
每个代的各个特点和适合的回收算法
年轻代(Young Gen)
- 年轻代特点:区域相对老年代较小,对象生命周期短、存活率低,回收频繁。
- 这种情况复制算法的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过 hotspot 中的两个 survivor 的设计得到缓解。(总体占用比例较小)
老年代(Tenured Gen)
老年代特点:区域较大,对象生命周期长、存活率高,回收不及年轻代频繁。
这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记-清除或者是标记-清除与标记-整理的混合实现。
Mark(标记)阶段的开销与存活对象的数量成正比。标记的是存活的对象,存活的越多,标记的越多,越慢
Sweep 阶段(标记清除的清除阶段)的开销与所管理区域的大小成正相关。全盘遍历所有需要清理的区域, 管理的区域越大, 越慢
Compact 阶段(标记整理的整理阶段)的开销与存活对象的数据成正比。存活的越多,整理的对象越多,越慢
简单介绍 CMS 回收器
1、 以 HotSpot 中的 CMS 回收器为例,CMS 是基于 Mark-Sweep 实现的,对于对象的回收效率很高;
2、 对于碎片问题,CMS 采用基于 Mark-Compact 算法的 SerialOld 回收器作为补偿措施:当内存回收不佳(碎片导致的 ConcurrentModeFailure 时),将采用 SerialOld 执行 FullGC 以达到对老年代内存的整理;
3、 分代的思想被现有的虚拟机广泛使用几乎所有的垃圾回收器都区分新生代和老年代;
4.6 增量收集算法
上述现有的算法,在垃圾回收过程中,应用软件将处于一种 Stop the World 的状态。在 Stop the World 状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。
如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting)算法的诞生。
基本思路:
1、 如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程依次反复,直到垃圾收集完成;
2、 总的来说,增量收集算法的基础仍是传统的标记-清除和复制算法增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作;
使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。
缺点:
因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。
4.7 分区算法
1、 一般来说,在相同条件下,堆空间越大,一次 GC 时所需要的时间就越长,有关 GC 产生的停顿也越长;
2、 为了更好地控制 GC 产生的停顿时间,将一块大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次 GC 所产生的停顿;
3、 分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间每一个小区间都独立使用,独立回收这种算法的好处是可以控制一次回收多少个小区间;
5. 写在最后
注意,这些只是基本的算法思路,实际 GC 回收器过程要复杂的多,目前还在发展中的前沿 GC 都是复合算法,并且并行和并发兼备。 所以这里觉得模糊的,到后面把各个 GC 回收器的实现说明完,就清晰了.